首页> 外文OA文献 >Subpicosecond energy transfer from a highly intense THz pulse to water: A computational study based on the TIP4P/2005 rigid-water-molecule model
【2h】

Subpicosecond energy transfer from a highly intense THz pulse to water: A computational study based on the TIP4P/2005 rigid-water-molecule model

机译:亚皮秒能量从高强度太赫兹脉冲到水的转移:基于TIP4P / 2005刚性水分子模型的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dynamics of ultrafast energy transfer to water clusters and to bulk water by a highly intense, subcycle THz pulse of duration ≈150 fs is investigated in the context of force-field molecular dynamics simulations. We focus our attention on the mechanisms by which rotational and translational degrees of freedom of the water monomers gain energy from these subcycle pulses with an electric field amplitude of up to about 0.6 V/Å. It has been recently shown that pulses with these characteristics can be generated in the laboratory [C. Vicario, B. Monoszlai, and C. P. Hauri, Phys. Rev. Lett. 112, 213901 (2014)]. Through their permanent dipole moment, water molecules are acted upon by the electric field and forced off their preferred hydrogen-bond network conformation. This immediately sets them in motion with respect to one another as energy quickly transfers to their relative center of mass displacements. We find that, in the bulk, the operation of these mechanisms is strongly dependent on the initial temperature and density of the system. In low density systems, the equilibration between rotational and translational modes is slow due to the lack of collisions between monomers. As the initial density of the system approaches 1 g/cm3, equilibration between rotational and translational modes after the pulse becomes more efficient. In turn, low temperatures hinder the direct energy transfer from the pulse to rotational motion owing to the resulting stiffness of the hydrogen bond network. For small clusters of just a few water molecules we find that fragmentation due to the interaction with the pulse is faster than equilibration between rotations and translations, meaning that the latter remain colder than the former after the pulse. In contrast, clusters with more than a few tens of water molecules already display energy gain dynamics similar to water in condensed phases owing to inertial confinement of the internal water molecules by the outer shells. In these cases, a complete equilibration becomes possible.
机译:在力场分子动力学模拟的背景下,研究了持续时间≈150fs的高强度亚周期太赫兹脉冲,将超快能量转移至水团和大量水的动力学。我们将注意力集中在水单体的旋转和平移自由度从这些亚周期脉冲中获取能量的机制上,这些子周期脉冲的电场幅度高达约0.6 V /Å。最近显示,可以在实验室中产生具有这些特性的脉冲[C. Vicario,B.Monoszlai和C.P.Hauri,物理学。牧师112,213901(2014)]。通过其永久的偶极矩,水分子受到电场的作用,并被迫脱离其优选的氢键网络构象。随着能量迅速转移到它们的相对质量位移中心,这立即使它们彼此相对运动。我们发现,总体而言,这些机制的运行很大程度上取决于系统的初始温度和密度。在低密度系统中,由于单体之间缺乏碰撞,旋转和平移模式之间的平衡很慢。随着系统的初始密度接近1 g / cm3,脉冲后旋转和平移模式之间的平衡变得更加有效。反过来,由于氢键网络的刚度,低温阻碍了能量从脉冲直接传递到旋转运动。对于只有几个水分子的小簇,我们发现由于与脉冲的相互作用而导致的碎裂要比旋转和平移之间的平衡快,这意味着脉冲后平移比前者要冷。相反,由于外壳对内部水分子的惯性限制,具有数十个水分子的簇已经显示出与凝结相中的水相似的能量增长动力学。在这些情况下,完全平衡成为可能。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号